From Empirical Laws to Linear Regression

Lecture 3

Prepared by: Joseph Bakariji



Physics from data

DioPTRIQUE

“~

676 :
; Erttoyn {E§ A,Tna\“)“x
h‘\. ‘

. —
—
—

- 'I“ll"ill“"""‘i)"_'.'_l,l-t:'.!IV_YI_""'7!'_1!5_ DAl .
;\l x n"‘z 7 e 4 L = B - ) | L I B R I \;-
Mol RSSO IS M s
A.

I‘h’!'l\]‘ n':__.’ e '. s ' d 3 1 4 '. 3 '-l :-‘ » ‘ \ g P;’RS ./!1: I_[E}r:

i) : = S = e

.s.-,»r_x» Hol T il ol Z AN 151 5] G . T ix et INIS ASTRONOMICYs
ro.¢ ERMEE e 3 : : e ih ; ' .. . ) N TLA'-\LW iX o n““v.

L #15 H _' : :. L B B R \r . _" . . \ " b ) ) ) ; : cCh LJLu Qlie ot )”S

L W]

[
L3 Al

E)uomods a1 )
o 2ppellarsey O IR Eristigue Playesad
9’793\#})’1 Ppellaroe vegers VecebEceentricys b
\ » g,
f@ \\5 -trculwe Eeff cai M o] ulr:L‘ fant Elliprice, y
¥ #

VAT PIcPERT.qua Liah: o
o

! ne g | c11 LT
(v Ul Cenwa Al |

y lt\-]“(( L 1

. : n S« LIS

‘C’i O nn ‘
3‘,11.4‘ ~“8iUm ll.d

L N A L
-

&in egrum !
1, weft:tamen cgan

L T RoTE——————
QAL LA AR L LANY

»
-
-
.
-
.
.
.
.
4
&

1
]
i}

2. 0.0
~

I

r——

N "'

I
|

SN W W]
B

e O

<

Halr e

mrimm

brminrerfocost

T R St 00 AN e PR T T :.»l\\“tnlil\(litl\v y e

nicis cenrium in

Galileo Kepler Descartes

Finding constants of nature that generalize in space and time



Galileo with a Computer

Homework Assignment for Next Week



The discovery of empirical laws

e The standard model was

X~y

/)

Flow Variable Potential Variable

* The art of scientific discovery was in finding which variables x and y follow that law and setting
up an experiment for it

* The craft involved: designing an experimental setup that
* Quantifies very specific properties of the world — a controlled environment

* The resulting relationship between a controllable input and a changing output is linear



Pascal’s law (1653)

Ap = pgAh

Hooke’s law (1678)

ldeal gas law (1834)

Laws are linear

Newton’s law of L
Ohm’s law (1781) Fourier’s law (1822)

viscosity (1701)

Fick’s law (1855)
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‘ Amonton’s law (1808) ( - Boyle’s law (1662)

Charles’s law (1787) h

Darcy’s law (1856)




From experiment to Law
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Empirical Law to Machine Learning

Training data: Dirain

q

Example — | 1.3 1.0 22
1.6 1.5 23

3.4 2.4 46

4.8 3.5 6/

6.7 4.5 83

l Training

Feature extractor

—>—> —»@—»C]

Labels

Predictor

Empirical Law

Hypothesis: linear relationship Ap ~ g
Objective Function: How linear is the relationship?

Optimization: What'’s the proportionality constant?

Machine Learning
« Hypothesis: Which predictors f are possible?

* Objective Function: How good is the predictor?

 Optimization: How can we find the best predictor?



Given new input, what’s the output?

Assume a linear hypothesis

h y Linear function h

X —

Yp
h(x)=ax+ b
What are the aand b X A
that fit the data? 1

a, b are parameters



Given new input, what’s the output?

Assume a linear hypothesis

h y Linear function . h

X — Y

hH(X) — 9() + Hl.x P

hy() = [0, 6,1 - [1, 1] "

Unknown Input
parameters features

9. % What’s the 0 = 16,,0,]?



What happens if we have more inputs?

Assume a linear hypothesis

=8

Inputs Output

hg(X) — [0(), 91, 92, 63, ] y [1,X1,X2,X3, ]

weights @ features X



How do you find

The Best Model
that fits the data?



Titius—Bode law

Johan Bode (Law): “Supposing the distance of the
Earth from the Sun to be divided into ten equal Parts,
of these the distance of Mercury will be about four, of
Venus seven, of Mars fifteen, of Jupiter fifty two, and
that of Saturn ninety five.”

In 1766, Johann Titius noticed a mathematical pattern
in planetary distances

d=(3*2"+4)/10 AU
The formula predicted planets at

0.4,0.7,1.0, 1.6, 2.8, 5.2, 10.0 AU

All known planets fit, except there was a gap at 2.8 AU
between Mars and Jupiter!

Astronomers believed a "missing planet” existed there

©® Earth

T-B rule distance (AU) Planet Semimajor axis (AU) Deviation from prediction1
0.4 Mercury 0.39 3.23%
0.7 Venus 0.72 +3.33%
1.0 Earth ! 0.00%
1.6 Mars
2.8 Cores®
5.2 Jupiter
10.0 Saturn
19.6 Uranus

— Neptune

2
3
4
5
B
7

— )
Fluto<

https://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law



The Unsolvable Problem

* Giuseppe Piazzi, observing from Sicily, spotted a faint
object moving against the stars

* He tracked it for 41 days through only 9 degrees of arc, .\
O

then it disappeared into the Sun's glare

 Problem: How do you find it again with less than 1%
of its orbit observed?

©® Earth

* (Noisy) Data: 22 observations over 41 days
(timestamp + 2 angles each)

 Unknown parameters: 6 orbital parameters (shape, size,
orientation of ellipse)

 [aplace declared it unsolvable!

https://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law



Gauss’s Solution

 (Gauss selected 3 well-spaced observations (Jan 1, Jan
21, Feb 11).

« Made no assumptions about eccentricity (unlike others
who assumed circular or parabolic)

* |teratively refined using all 22 observations!

e Strategy: find parameters that minimize the sum of
squared errors across ALL observations.

 The innovation is that instead of fitting exactly through
any single point, he found a curve that minimizes:

22
Z (observation - predic:tion)2

i=1 ©® Earth

https://www.actuaries.asn.au/research-analysis/gauss-least-squares-and-the-missing-planet



Gauss’s Solution —

1 5 MC@04535
2 00001 A1801 @1 02.82337 03 38 05.84 +16 20 51.5 MC004535

3 0001 A1801 @1 03.82045 03 37 50.6 +16 24 21.2 MC@@4535

4 ee00l A1801 @1 04.81755 @3 37 35.52 +16 27 50.7 MC@4535

. . . 5 00001 A1801 @1 10.80058 03 36 45.9 +16 50 36.9 MCB04535

¢ On December 1 801 , GaUSS pUbIlShed hlS pred|Ct|On, 6§ 00001 A1801 @1 11.79783 03 36 43.82 +16 55 MC@04535
. 'y o | 7 00001 A1801 @1 13.79236 03 36 44.91 +17 02 54.7 MC04535

and his position was 6° away from other astronomers’ |, g, S 08 £ 5 D o 660 < O 10

9 0001 A1801 @1 18.77899 @3 37 11  +17 25 MC@4535

guesses 19 eeo0l A1801 @1 10.77641 @3 37 24.74 +17 29 12.2 MCB@4535

11 00001 A1801 @1 21.77126 @3 37 51.61 +17 38 25.9 MC@@4535

12 0000l A1801 01 22.76871 03 38 07.15 +17 43 05.0 MC004535

° Franz von Zach found Ceres on DeC 31 1801 W|th|n 13 00001 A1801 @1 23.76618 03 38 25.02 +17 47 47.9 MC@04535
o | . ) ) 14 00001 A1801 @1 28.75376 03 40 14.78 +18 12 11.1 MC@04535

05 Of GaUSS S pred|Ct|On, and was qUOte Saylng: 15 060001 A1801 @1 30.74893 03 41 09.30 +18 22 15.3 MCB4535

16 0000l A1801 @1 31.74652 03 41 38.88 +18 27 18.9 MCB4535

17 00001 Al801 02 01.74414 03 42 09.3 +18 32 26.8 MCB04535

y : : : 12 00001 A1801 02 02.74178 03 42 41.69 +18 37 40.2 MC@04535
Ceres can never again be lost, since the ellipse 19 oot AL961 62 05,7347 83 44 26,68 +18 53 19,2 ACDB4535

. . . 3 0 0000l A1801 02 08.72793 03 46 24.27 +19 09 13.7 MC@@4535

Of Dr' GaUSS ag rees SO exaCtIy Wlth Its locatlon' 21 00001 A1801 82 11.72121 03 48 33.97 +19 25 18.3 MC@@4535

22 oooel A1802 @1 26.17022 12 43 22.43 +10 51 17.1 AP0@1500

23 00001 A1802 01 27.16767 12 43 38.14 +10 55 33.5 AP001500

° Wha-t equatiOn d|d GaUSS f|-|:’) E”ipses deSCribed by 24 00001 A1802 02 04.14664 12 44 47.02 +11 34 23.0 AP001500
; P . ; 25 000061 A1802 62 11.12723 12 44 21.67 +12 15 23.6 AP0@1500

Kepler S laws (WhO solved a hard f|tt|ng problem!) 2% 06001 A1802 02 27.07946 12 38 26.46 +14 03 35.0 AP0@1500

27 00001 A1802 02 28.07632 12 37 51.71 +14 10 36.2 AP001500

28 00001 Al802 03 06.05722 12 33 57.12 +14 51 40.0 AP001500

29 00001 A1802 03 07.05399 12 33 13.85 +14 58 15.1 AP001500

30 00001 A1802 03 10.04425 12 30 59.16 +15 17 31.1 AP001500

31 00001 A1802 03 11.04097 12 30 12.39 +15 23 42.7 AP01500

32 00001 A1802 03 15.02781 12 26 59.26 +15 47 13.1 AP0O1500

33 00001 A1802 @3 16.02450 12 26 09.77 +15 52 48.2 AP0Q1500

34 00001 A1802 03 18.01788 12 24 29.19 +16 03 14.6 AP001500

35 00001 A1802 03 19.01456 12 23 38.18 +16 08 18.5 AP001500

36 000061 A1802 63 20.01124 12 22 47.29 +16 13 09.0 AP0@1500

https://github.com/aerospaceresearch/orbitdeterminator/blob/master/orbitdeterminator/example_data/mpc_ceres_data.txt



Gauss and Ceres

* Giuseppe Piazzi, observing from Sicily,
spotted a faint object moving against

the Stars T-B rule distance (AU) | Planet Semimajor axis (AU) Deviation from prediction'
0.4 Mercury 0.39 -3.23%
 He tracked it for 41 days through only 0.7 Venus 0.72 +3.33%
9 degrees of arc, then it disappeared L Earth 1.00 0.00%

into the Sun's glare L& Mars 1.52 ~4.77%
2.8 Ceres? 2.77 -1.16%

* Problem: How do you find it again with - Jupiter T2 +0.05%

less than 1% of its orbit observed? 100 2L 9.58 -4.42%

19.6 Uranus 19.22 —-1.95%
— Neptune 30.07 -

Pluto? 39.48

https://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law



How do we pick te et parameters 0 ?

Hypothesis hy (X(i)) — y(i) Residuals
d ap (x) =y
; 0 V Absolute loss
hy(x) = 0'x = 0. x. | | | N
i=() (hg (x(l)> — y(l)> Square loss
y .
Cost function i " ’ . y®
L 2 e - distance (hg (x(i)),y(i)>
J(0) =% Z (hg (x®) —y(i)) . e i
i=1
1 « . .
=~ D (67x0 - y<z>)2 .
i=1 ® o

Ordinary least squares



Choose 4 to minimize the cost J(0)

Cost function

d
J(0) = % Z (he (x®) = y(i)>2 J(@])

=1

P Initial Guess

Gradient Descent Update

s while not converged: )

Optimal ¢ J
N - y Solution J

Learning Rate é,
J




The gradient can be computed explicitly

Gradient Descent Update

s while not converged: A
0J (0 J (O
0,
g Y
/

Learning Rate Initial Guess

dJ(0)

Derive explicitly

00

Optimal G? J
For a single (x, y) pair Solution

Va\

Assume: y = 6, + 0,x 0;



Gradient Descent Update in 2D

J(0)




f01‘= 1...T: Epochs
=0 — az (he (x®) = y(i)> X0

Batch Gradient Descent

~




n

0:=0— az (he (x(i)) — y(i)) @

=1

too expensive for large n
For a single training example (x(i) (i)):

0:=60—a (he (x®) ya')) (i)

Stochastic Gradient Descent

-
for.= 1...T": (Epochs)

for all examples i:

0:=0-a (hg (x®) y@) 20

Y




Stochastic Gradient Descent

~
for‘= 1...T": (Epochs)

for all examples i:

0:=0-a (he (x®) y@) 20




Batch Gradient Descent

\_

for all examples i:

0:=0-a (he (x®) — ym) =0

4 )
fort=1...T:
n
0:=0-a)y (he (x) — y(i)> )
N =1 y,
Gradient Descent
4 I
fort=1...T:

J




1. Assume a linear hypothesis

d
ho(x) = 0'x = Z 0. x;
i=0

l

2. Cost function
d

| . N\ 2
_ @\ _ +,@
1(0) = - i§=1f, (1 (x©) =)
3. Minimize

A\

6 = arg min J(O)
0

5. Predict unseen data

Y pred — hé’(xnew)

1

4. Optimal predictor

y = hy(x)

1o

SGD
4 )
fort=1...T:
for all examples i:
6:=6—a (h@ (x®) y<i>) 70
\_ W,




Hooke’s Law

Homework assignment for next week - with leaderboard



