Deep Learning

The ML workflow

>

Training Set Validation Set Test Set * e How do | choose the feature vector?

, — ¢(x)=1[1,2,...,7

» L

not satisfied

How do | choose the feature vector?

o(x)=11,z,...,7]

o(x) = [1, z

% / ¢(x) [1, T, T mg}

¢(x) =11, x, sin(3x)]

1079777972777

How do | choose the feature vector?

Boat

Linear Predictor

fw(x) — X W

W = [WI’ Wz, W3, W4]

Network Representation

X = [.xl, .X2, XB, X4]

e

[fW(X) — Wlxl + W2X2 + W3x3 + W4X4_ |

g

_ J— —— ——— ——— — —— — — _ _ I

Linear Predictor

2 outputs?
P 3 * 2 fitting parameters
Y1 = W X = WX+ WXy + WisX3
—> A
Yo = Wy« X = Wy X| T+ WpoXy + W)3X3
X A
Matrix form
A xl
[M] B [Wn W12 W13] X
s 1w W W
Vs 21 22 % X5

yo= W X

From Matrix to Network

Matrix Representation Network Representation

Account for Bias: 1 =

~ X1
[M] B [Wn W12 W13] X
S 1 [Iwyy Wy W '
Y, 21 Wi W3 I
y = \%Y% X

Index notation

n
Yi = Z Wik
J=1

Linear Predictor - Explicit Bias

Matrix Representation

Network Representation

<>
[\ I
O ————
|
s =
O =
DO N
s =
O =
L W
Le—

S
||
=
s
_

Linear Predictor

X b

\ W
| - |+

m X 1 m X 1
Number n X 1
of outputs Number Some formulations explicitly account for b,
of inputs while others include the bias as part of X

Here we omit b for simplicity of representation

Nonlinear Predictor

Logistic function: a'(g[;) —

ReLU: o(x) = xH(x)

Activation Function

Neural network

Nonlinear Linear Nonlinear Linear

Neural network

<)
|
2
z
=

Hidden layer

Can be interpreted
as a learned ¢(x)

Deep network

Why deep learning?

Feature learning

Lee, Honglak, et al. "Unsupervised learning of hierarchical representations with convolutional deep belief networks." Communications of the ACM 54.10 (2011)

Loss function

fwlwz(x) = W, 6 (Wx)

Ly Wi W) = | fiv,w,(0) —y

Stochastic gradient descent update

Wl < Wl — aVng(X, Y, Wl’ Wz)
W2 < W2 — aVWzg(X, Y, Wl’ Wz)

How do we calculate the gradients?

Approach

Training loss

] < N
LW, Wy ==Y LD, y0 W, W,)
& =1

Objective

W,,W, = arg min Z(W,;, W,)
WI’WZ

Optimal predictor
fWIVAVZ(X) = W,o(W,x)

Non-convexity

W,,W, = arg min L(W,, W,)
W19W2

Linear predictor loss Neural network loss

2111 — Willx 4 pl1!

vl = G(Z[l])

2121 — W2yl 4 pl2]

vi2l = G(Z[Z])

00000000000 000000 -

N

Flatten

Hypothesis

211 — Willx 4 pl1!

vt = gzl

2121 — W2yl 4 pl2]

vi2l = (2]

A\

y = fwiwizws (X)

2131 — WBly[2] 4 p13]

Vi3l = (23]

Loss (Binary output): Z3,y) = — Z yOlog 39 + (1 — y?) log(1 — W)
=1

Gradient Descent Hypothesis

Update the i"” layer: 7zl = Wlllx 4 pli]
: 07 | vill = 6zl

wll = wlid — 4 |
w IWIi] 2121 — WLl 4 pl2]
2] — (y[2]

blil = plil — 4 0-Z Ve =o(z)

obtl 231 — WBIy2] & pi3]

§ = o)

What are the gradients?

What are the gradients?

L@y =—) yPlog$? + (1 —y?) log(1 — $7)
=1

0 0% 0y o0z"

OWBI 95 0z13) oWBI

0 0L 0y oz ovlHl ozl

oW1 09 9zB3] ovi2l ozl2 W2l

0F 0Z 0y o02P! oviHl ozl

obl2] ay 0zl31 ovl2l ozl2] gbl2]

Hypothesis
Z1 — Willg 1 pll]

vl = G(Z[l])

2121 — W2yl 4 pl2]

vi2l = G(Z[Z])

2131 — WBIy[21 4 p13]
9 = o(z"))

What are the gradients? Hypothesis

L@.y) ==) yPlog$? + (1 — y¥) log(1 — 5?) 7111 = Wlllx + pl!]

=1
vl = G(Z[l])

0 0% 09y oz"

[2] 2]+, 1] 2]
— 7“1l = Wiyl + b
[3] . [3] [3]

oW oy o0z!°1 oW V2T = o120

7yl pao ot 213 = WV 4 pl3
oy PO 1 —$O N
y = o(z"™)
3
0 ?3] = 6'(z) = o(zB)(1 - o(zP))
Z
0z’

_ 2

oW1

0F 0L 0y 02"

Hypothesis

oWbBl gy ozl3] oWl 2111 — Willx 4 pl!]
vl = G(Z[l])
0Z .
— ==y —+ (1 = yV)—— 2] — Wlyl1] 4 pl2!
0y PO 1 — 9@ 2z = WElv i 4+ b
2] — ;(712]
P vl = o(z2')
— = o/) = o(z¥)(1 - o(z)
9// 7131 — WBIyI2l 4 pl3]
3 A
oz — V[2]T Y= G(Z[S])
OWI3]
SGD Update
0L — (y(i) _ A(i))v[2]T — 5 WBl=wBI_ 4 i
oW 3] oW!I3]

02 0Z 0y 0z

= = (¥

(i) _ §@yyl2)"
OWBT — 99 0zB1 oWB]

0 0L 0y oz ovl¥l ozl

oW dy 0zB! ovl?! gzl2] gWI2]

common terms across gradients

Can we save the gradients to be reused
for computing other gradients?

Computation graphs

Chain rule

Backpropagation

L(x,y, W1, Ws) = [0(Wy0(W:1x)) - y|

Vw1£:2W2TR®y®(1—y)®V@(1—V)XT

Vw,L=2ROy0O (1-9)v'

B 1
14 e =T

assuming O(:U)

Advanced Deep Learning

Hypothesis Class

Hyperparameters

How do you train a deep network?

 Use many hidden layers for abstraction
 Use adaptive time steps

* Use hyper-parameter optimization

Training Set Validation Set Test Set

https://playground.tensorflow.org/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classity/

The ML workflow

>

e Data cleaning

Training Set Validation Set Test Set .)) DlmenS|0|.waI|ty redgctlon
s ° * Unsupervised metrics

N — 9%

» L

not satisfied

Neural network zoo

. Input Cell

. Backfed Input Cell

. Noisy Inpul Cell

. Hidden Cel.

. Prabablistic Hidden Cell
‘ Spiking Hidden Cell
. Capsule Cell

. Quzput Cell

. Match Input Qutput Cell
. Recurrent Cell

. Memory Cell

. Gated Memoary Cell

. Kernel

. Convolution ¢r Pool

Markov Chain (MQ) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BV (REM) Deep Belief Network (DBN)

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijren asimovinstitute.org

Perceptron (P) Feed Forward (F%) Radial Basis Network (RBF)

e The ohe

Recurrent Neural Nebwork (RNN) Leng /Short Term Memory (LSTM) Carted Recurrent Unit (GRLU)
() - -

Auto encoder (AE) Variational AE (VAE) Denoising At (DAE) Sparse Ak (SAZ)

s
2,

Deep Feed Forward (DFF) Deep Convolutional Network (DCN) Deconvolutional Nexviork (DN) Deep Convelutional Inverse Graphics Network (DCIGN)

Cenerative Acversarial Network (CAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN])

e
WA WA

o

o R\
\‘“’3‘

b\

/@ B0 8/
T

asimovinstitute.org

http://asimovinstitute.org

Auto-encoders

Low dimensional
Latent representation

X encoder l decoder

if 0 = I, network performs SVD decomposition

X =UXV"

Corrupted image Predicted image

"“)'J""l n‘.“‘ £

SUL) NeLUrons

raden laver 1 Mdden layer 2 \l-
‘7- L PLrons ':4)‘ LS
IO layer Reconsiruct layer
784 neurons 84 neurons

Convolutional neural networks

Source pixel

(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Input

Input Conv Pool Conv Pool FC FC Softmax

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CO nVOI Ut|0n Layer Filters always extend the full

depth of the input volume

32x32x3 image /
5x5x3 filter
32 £/
I| Convolve the filter with the image

l.e. "slide over the image spatially,
computing dot products”

Convolution Layer

_— 32x32x3 Image

5x5x3 filter w
32

™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (.e. 5*5*3 = 75-dimensional dot product + bias)

wiz + b

Convolution Layer

activation map

__— 32X32x3 Image

5x5x3 filter
32

28

convolve (slide) over all
spatial locations

consider a second, green filter

Convolution Layer

— 32%X32x3 image activation maps
5x5x3 filter

28

convolve (slide) over all
spatial locations

28

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32
28

Convolution Layer

32 28
3 6

We stack these up to get a "new image” of size 28x28x06!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONV, CONV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
HXOHX3 5X5X6
32 filters 28 filters 24
3 0 10

For more details + an animated demo see:
https://cs231n.github.io/convolutional-networks/

Single depth slice

MAX POOLING

11112 | 4
5| 6| 7 | 8
3121|110
112 3| 4

max pool with 2x2 filters
and stride 2

- >

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

I

&

l

B
downsampling
112

\
224

RELU RELU

RELU RELU RELU RELU
CONV

CONV CONV

—e

JCONV

CONV

.

CONV

———a

 ——ad

airplane i
=

SR g™
import toxch.nn as nn v 2. 90 4 T
import torch.nn.functional as F automobile ’_' _"EHEI 3% ‘ E .ﬁ
am | = e N G)] e
| m— N | . 1 :
o Eall WES B
S N \ .3
class Net(nn.Module): -1, ™ »
" « FEOHDSESEs P
def init__(self): , Lﬂ ke — e :
o AT Y g Ny N L _
im0 o WIS ES VS
self.convl = nn.Conv2d(3, 6, 5) . T e N ~ ;‘. .
self.pool = nn.MaxPool2d(2, 2) dog [g.ﬁ'b~..!ﬂ)ﬁ"ﬂd x
- : . A Sk \ - AR G
e S S EEEELS AN
self.fcl = nn.Lineax(1lé6 * 5 % 5, 120) , — . '
=R o) Pl
: ' ..T‘ ’ '

self.fc2 = nn.Lineax (120, 84) horse

frog

self.fc3 = nn.Lineax(84, 10) , g — 1] | .
oo il P A
def forward(self, x): truck | m Wngwﬂm

= self.pool(F.relu(self.convli(x)))

= self.pool(F.relu(self.conv2(x)))

= torch.flatten(x, 1) # flatten all dimensions except batch
= F.relu(self.fcl(x))

= F.relu(self.fc2(x))

= self.fec3(x)

return x

X’ X X X X X

net = Net() https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

1 | S S

erson on Blke
-

Face Detection, Viola & Jones,
2001

N

y '* L e

The following slides were taken from Stanford’s CS231:

- https://cs231n.github.io/
- https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHMS8IjY|-zLfQRF3EO8sYv

https://cs231n.github.io/

rosette —_
Hon ‘x_‘ » *
- shirt — striped
wearing
/'/' . dal'k
/ playing A
= - 5
/ _has—— hair ——» short

1/ -

//// /" wearing

.y shorts —»camoflaged

¢
Ve ____yracket ——light
boy T»holdmg =
. 4 .
/// \ _k— - —
Sy B A— ANt
license plate m LN ’ car behind \\\ ——— hehind \\
:
. : ’ ad
rackel , air / A L \«
RN T | / in front of _ ~ _ in front of —»grass — green
. | RS / . ~
hair - 4‘“‘- wr\;y fence / . L — cnoc<_ —— - T "
o P # / ~_ybehind — /’ ,-»-"?k — behmd
J /--’"/ J— 4
vest grass | - B -
l/”~ _—+behind—" / S/
: f - / o
Sh”" aCket // / ln front Of f_/,,-/
e i"hCh'“d P ~_yin front of~
child fosette |\ ™S N\ S brown
\\ \\ has \\\ / ’/,/ —f/_r/’
shorts hit A\ N N\ \\ /7~ holding — racket — light
\ white | y
picture DOY p¥ l child »has »hair »brown
parked \,. | |
sneakers i shorts license plate § wearing — shirt »red
wearing ——»vest »blue
.
., playing _»blue
| p 4
. / :
\ wearing —»sneakers) denim 'ted
\ — e
\ . o '

wearing ——» shorts has —— picture -+ yellow

Johnson et al., “Image Retrieval using Scene Graphs”, CVPR 2015

[Toshev, Szegedy 2014]

frame: t-

3 t-2 t-1 t

fJ iiﬂ l_‘ﬂ I‘j g ."s

[GUO et al, 20 1 4] Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,

ANA Al1aosnl YWane)14, Repnrog o WITHh berm ON

Fast-forward to today: ConvNets are everywhere

ACE] s
| CALIFORA == H
= v

Benign Benign Malignant Malignant Benign —

-
- o
A

¥ A

[Levy et al. 2016] Figure copyright Levy et al. 2016

Reproduced with permission.

k
.

Photos by Lane Mcintosh.

[Sermanet et al, 201 1] Copyright CS231n 2017.

From left to right: public domain by NASA, usage permitted by C .
ESA/Hubble, public domain by NASA, and public domain. [,resan et al-]

[Dieleman et al. 2014]

This image by Christin Khan is in the public domain Photo and figure by Lane MclIntosh; not actual
and originally came from the U.S. NOAA. example from Mnih and Hinton, 2010 paper.

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

No errors Image
| ' . Captioning

[Vinyals et al., 20195]
[Karpathy and Fei-Fel,
2015]

\y v 1 | N . 3 o

N 4 >t e n* . N ’ (e s

N «'1 W J L 1 ! i .] " 4
: W "N e T 1 6 AR e

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

All images are CCO Public domain:
https://pixabay.com/en/luggage-antigue-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://ipixabay.com/en/surf-wave-summer-sport-litoral-16687 16/
https://pixabay.com/enfwoman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/

A manr !dmg a wave on A cat Slttlng on a A woman standing on a https://pixabay.com/en/baseball-plaver-shortstop-infield-1045263/
top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk?

% ~Ne
e \'-\-._ N
27 - J .
- o - 7 NS,
2 A a =
T —

Original image is CCO public domain
Starry Night and Tree Roots by Van Gogh are in the public domain
Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach Bokeh image is in the public domain '
Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017

fram a blog post by Google Research. Stylized images copyright Justin Johnson, 2017;
reproduced with permission

i L - i }
e ke

o
1 - <«
i 1% -

Large Sc le Visual Recogmtlon Challenge
SRR b ST ":;?,"‘.5»-: %, *t--:z-ff-a»a‘fp':-«. .-.q':»°‘f*:-‘.'re%e,,=‘- o S e e

*!i--woga-

- 1‘, N v ﬂ"' -3¢

i o - L - o
Fw) - * ” t ‘{“ F’j U

o P P e = T e Bl e A e

L
3“"""‘4,.

b 5
th

The Image Classification Challenge BV

1,000 object classes
1,431,167 | mages.

Steal arumpae e | Giant PANAA | i
- a;~ iy
Drumstick PFag@mss 28 Drumstick @E, v
- ' ' 15 ."'AN e

Mud turtle m.-t] Mud turtle fgﬁ%.{zﬁi

an

% “:- Y . ." ~-' " ‘t "% '- n’ Ay ! h-.\- Y T ‘ 4 ’5 -7 ~e ‘2?‘
a,.'ﬁ.;’::_u"f:: r LSt o v TR N ’:'.;'Lz' !,E l.’i | rrl’f,p : - s A o P Y

"J.V 'l "y
:»IM .GE

. L _," ' e 0 .'. - .’ ﬁ-‘l ? P . =%) .~, \c..
et et -}M ‘.',-0-’!_4_‘1 “l&‘ E At 3 LN ld'.l 35 A .cb'. i

b - i

R L : TR T TR T ‘WE; Wl L. ¥ i 4“ Gl ce) RIS A TEND
p.Le’ ~ H-\Q.,.--,ts ’ "! -« SN s B R Ui (o U“Q \» ~ waNAS cnl iRl

Th'Image Classification Challenge:

1,000 object classes
1,431,167/ images

2010 2011 2012 2013 2014 2014 2015 Human

: - Simonyan and
Sanchez and Krizhevskyetal Zeiler and s Szegedy et al (He etal Russakoysky et 2l

Linetal

BN Q.a, qc . ._"&_}
Q' - -_L!

1998

LeCun et al.

Image Maps

Input

2012

Krizhevsky et al.

\\
\\\\
\\\
N — \\
\b\ \\
/T
o
Convolutions
L]
of transistors
B 2 o o=
. 106
R\
\ 5
\ \\ \\ 5 N
| “’w. \ ".:‘\U f.' 4'4':
a1 AL S \,, 12
) ‘..t t'_ '.“ ".,
y—\ N\
.‘. " -4 j]’

\ A \
\ T c X
'l l[N '.‘-
<243 Stride, Max 128

| poohing

g -
Vi 9

1

of transistors

Subsar;wpling

192

Y
.
N,
N "~ . X
N\, ., % X
N N, \ N\ N, N
A N\ \, \ N\ \

N N, \ hS N\
N\ N\ \, \ N
\ N\, AN \ N\ \
\ \.\ \, N \.\
\ \ \ \
N\ \ AN N N
N N \ \ N
S . \, \ N, \
. N, \, ., N,
\ N\, \ \
AN \
N\,
N

. \ \
N "~ “ ‘*. \
N N\ N, N\
N\ N\ \ N\ N\

N\ , p . AN
—— r— \ \ ‘-“ . .
~— — . N, \ N, N,
\ N, " \
g N N \ A N

N, h) N \\
e Y

Fully Connected

of pixels used in training

107 NIST

| ‘ » >
I I\l ’ 1 4
0 "‘ ‘I .. ' | |
l‘ : " 128 2048 \ 2048 l.."j ense
! Ly ‘ A — (—
, 1 \13 \

192 128 Max

. an d
-\----I"-r. ™ LuUusN
el g

of pixels used in training

10" IMAGE

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

28.2
First CNN-based winner 25.8 T
152 layers \]
13.7
22 layers 19 layers |
6.7 7.3
3.57 8 layers 8 layers shallow
| , .
|
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Stud Y- AlexNet % 3 %ﬁ 3\ I k= L7 *‘
[KrizhevsKy et al. 2012] A \s— 3 - - >< ><

224 5 ™ A

o 3 \ _‘. . . "b---".“ » > >
,‘ : j B =] 13 3 1135 13 dense dense
Q e ens ___‘.._‘_'..? 3‘ -“...--" 3y 1000
224

W '

195 _
- 192 192 128 Max

Full (simplified) AlexNet architecture: N i o <o
[227x227x3] INPUT lors™ ___| pooting pooling

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOQOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOLZ2: 3x3 filters at stride 2
[13x13x256] NORMZ2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POQOLS3: 3x3 filters at stride 2

4090} 4096 neurons
14090} 4096 neurons

2048 2048

Details/Retrospectives:

- first use of RelLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%

[1 OOO] 1 OOO neurons (ClaSS SCO I’ES) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks 25.8
152 layers T

22 layers 19 layers
6.7 '7.3

8 layers 8 layers

3.57 shallow

ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
AlexNet

ILSVRC'15 | ILSVRC'14 ILSVRC'14
ResNet GoogleNet VGG

Figure copyright Kaiming He, 2016. Reproduced with permission.

Case Study: VGGNet
. .
[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) _
-> 16 - 19 layers (VGG16Net) e

[FC 4096]

I FC 4096 I
POOl

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13

(ZFNet)

-> 7.3% top 5 error in ILSVRC'14 AlexNet VGG16

Softmax

FC 1000

FC 4096

FC 4096

Poo

VGG19

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

"Revolution of Depth”

152 layers

2 layers 19 layers ‘
6.7 ’7.3

8 layers 8 layers

LSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
oogleNet VGG AlexNet

shallow

ILSVRC'15
ResNet

Figure copyright Kaiming He, 2016. Reproduced with permission.

FC 1000

Case Study: ResNet

[He et al., 2015]

Very deep networks using residual F(X) + X | el
connections
- 152-layer model for ImageNet X
- ILSVRC’15 classification winner ~(X) Ire'“ identity
(3.57% top 5 error) ‘ ,
- Swept all classification and ——
detection competitions in > e
ILSVRC’15 and COCQO’15! Residual block TR

3X3 conv, 64

o
‘
[3x3conv.64 |
| 3x3conv. 64 |
o I
A
| 3x3conv.64 |
.—"
l D |

Recurrent neural networks

X1y X2y X3y -3 Xgy Xjt1y-:-5Xn

[Xz'+1, Zz’] — N(Xz', Yi)

Y, — — Z;

X; —» — X511

L

Feedback output to input

Numerical solvers are recurrence relations!

“Vanilla®” Neural Network

one to one

\ Vanilla Neural Networks

Recurrent Neural Networks: Process Sequences

one to one one to many many {o one many {0 many many to many

\ e.g. Image Captioning
Image -> sequence of words

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
T I 1t 1 T {0 1 P11
! ! P 1 P 11 o

\ e.g. Sentiment Classification
sequence of words -> sentiment

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Machine Translation
seq of words -> seq of words

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
T T 11 T i I
T T . Pt 1 il ML

e.g. Video classification on frame level

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

= fwl(he_i)|z:)

new state / old state input vector at

some time step
some function "

with parameters W

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

class RNN:

def step , X):

WWANAT T IS TUAL INSUINE D X

with parameters W

.h = np.tanh(np.dot(.W_hh, .h) + np.dot(W _xh, x))

y = np.dot(.W_hy, .h)
return y

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

Yy hy = fW(ht—la fl?t)

hy = tanh(Wpyph 1 + Wopay)

X Yt = Whyht

RNN: Computational Graph

RNN: Computational Graph: Many to One

RNN: Computational Graph: Many to Many

_>

_...

L

3

—

RNN: Computational Graph: Many to Man v
Y _’L1 yz_’Lz ya'_'La yT_’LT
T T T T
h0—>fw—>h1—>fw—>h2—>fw—>h3-—> —»hT
W X1 x2 X3

RNN: Computational Graph: Many to One

target chars: e i i

Example: 0 05 0 02

2.2 0.3 0.5 1.5

Character-level output layer | 2% o - 5

Language Model 4.1 12 4.4 2.2
R R L

Vocabulary: | 0.3 1.0 0.1 W hn| -0.3

hidden layer | -0.1 ~ 0.3 ~ 05— 0.9

h,e,l,0] 0.9 0.1 0.3 0.7
I I

Xxampie training 1 5 B E

sequence: nput layer | o . . ;

“hello” 0 0 0 0

input chars: “R’ “@” I g 3

Example: Sample

Character-level
Language Model

Softmax

Sampling

1.0
output layer g% |
4.1
Vocabulary: ‘
[h,e,l,o] | 0.3 ‘
hidden layer | -0.1
0.9
At test-time sample |
characters one at a time, o lavee é
feed back to model i

“l”

!

11

17

68

03 ﬁ

!

0.1 #
0.5

1.9

1.1

0.1 |w hh
ast—
0.3

Forward through entire sequence to

Backpropagation through time onito sequenco {0 compute gradient

i

Truncated Backpropagation through time

A\

>

>

>

>

>
>

>

- ———

>

>

Loss

S
e

> ui

>

AW

AN

>

>

>

>

Carry hidden states

forward in time forever,
but only backpropagate
for some smaller
number of steps

= - Bengio et al, “Leaming long-term dependencies with gradient descent
a n | a ra I e n OW Is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, "On the difficulty of training recurrent neural networks”,
ICML 2013

ht. = tanh (I'/Vh, h ht 1T ‘Vir hLt)

- |) V4) VA h t—1
n , staTck h — tanh ((U nn N hm) (r))

h_
- - — tanh (IV (y 1))
Lt
X

- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I | I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Backpropagation from h,
to h_. multiplies by W

(actually W_)

ht — tanh(Vth ht—l -+ 1"1/17}11})

— tanh ((‘Vh e Whe) (h;,_ 1))
{
_ tanh (W (’“—1)>
Lt

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
IS difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, "On the difficulty of training recurrent neural networks”,
ICML 2013

N
-

—_—()—>
W \ J=== tanh

1

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

|

X

L

» stack

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Long Short Term Memory (LSTM): Gradient Flow
[Hochrelter et al., 1997]

Backpropagation from c, to

~ ~ C, , only elementwise
[\ U .
c b O+ —> C _ mult!pllcatlon by f, no matrix
t-] «+——————— T<— y «— t<=—— multiply by W
f
i !) "
W-— —L’@ tanh / — ‘ W fit—1
gJ i O o) Lt
A > atack 5 b g tanh
1 \ I O t//j ¢t =] Oc—1+104g

h’f, —) (3' taIIh(Ct)

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

vector from

below (x)
X
h
W
vector from
before (h)
4h x 2h

sigmoid

sigmoid

sigmoid

tanh

4h

f: Forget gate, Whether to erase cell

I Input gate, whether to write to cell

g. Gate gate (?), How much to write to cell
o: Output gate, How much to reveal cell

Gy = ft@Ct—l +10g9
x
4 h hy = o0® tanh(ct)

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

) —» + —» (C »C -

T e
f
I

Y —> Y
:}::3 tanh W—(Q} tanh W—(
.' sStac

THE SONNETS

by William Shakespeare Y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-subsrantial fuel,
Making a lamine where abundance lies,
Thysell thy foe, to thy sweel self (00 cruel:
Thou that art now the world's fresh ornament, —
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep renches in thy beauty's lield,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken evyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!

This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

at first:

tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astal f ogoh eoase rrranbyne ‘nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here

sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonskli's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition 1s so overelical and ofter.

l train more

"Why do what that day,"” replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Plerre aking his soul came to the packs and drove up his father-in-law women.

For @, -, . where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T'is a separated algebraic
space.
Proof. Proof of (1). It also start we get

S=8pec(RR)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [|Z xpy U — V. Consider the maps M along the set of points
Schipnr and U — U is the fibre category of § in U in Section, 77 and the fact that
any U affine, see Morphisms. Lemma 77. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(i') — S is smooth or an

('=U('_. xs, U;

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy, is a scheme where z,2', s € 5" such that Ox ;- — O, _, is
separated. By Algebra, Lemma 77 we can define a map of complexes GLg/(z'/S")
and we win. a

To prove study we see that F|y is a covering of A", and 7; is an object of Fx g for
i > 0 and F, exists and let F; be a presheaf of Oy-modules on C as a J-module.
In particular F = U/F we have to show that

M® = I* @spec(k) 5.0 — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (5("1/“.")}'7:’”,-. (Sch/S) fopf

and

V=I(50)— (U .Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets, L

The result for prove any open covering follows from the less of Example 77. It may
replace S by X, paces.¢tale Which gives an open subspace of X and T equal to Sz,,.
see¢ Descent, Lemma 77. Namely, by Lemma 77 we see that R is geometrically

regular over S

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj,.(A) =

Spec(B) over U compatible with the complex
Set(A) = I'(X, C)_\'_u\. y.

When in this case of to show that Q — Cz;x s stable under the following resull
in the second conditions of (1), and (32). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. DBut given a scheme U and a
surjective étale morphism U — X. Let UNU =]]._, . Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.]

The following lemma surjective restrocomposes of this implies that F, = F,,

]:.\'_ LIE

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fy;g. Set T =
J1 CI,. Since I™ CI™ are nonzero over ip < p is a subset of 7, o o Az works.
Lemma 0.3. In Situation 7?7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (?7). On the
other hand. by Lemma 77 we see that
D(Ox:/)=0Ox(D)

where K is an F-algebra where 4,,.; is a scheme over S.]

static void do command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); G t d
if (state) enera e
cmd = (int)(int state “ (in B(&ch->ch flags) & Cmd) 2?2 2 : 1);
else C COde
seg = 1;

for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +

((count & 0x0000 fEEEff f8) & 00000f) << 8;
if (count == ()
sub(pid, ppc md.kexec handle, 0x20000000);

pipe set bytes(i, 0);

subsystem info = &of changes[PAGE SIZE];
rek controls(offset, 1idx, &soffset);

control check polarity(&context, val, 0);
for (1 = 0; 1 < COUNTER; i++)

seq puts(s, policy);

conv-512
conv-512

conv-512
conv-512

FC-4096

FC-4096

hO

x0
<STA
RT>

<START>

h1

siraw

h2

test image

sample

<END> token
=> finish.

Image Captioning:

- e 58 >

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in

suitcase on the floor branch grass with a frisbee the grass
1
B, L —

T'wo people walking on A tennis player in action T'wo giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field ¢ dirt track

Image Captioning: Failure Cases

% A bird is perched on
s~ atree branch

Amanina
baseball uniform
throwing a ball

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

Image Captioning with Attention
Distribution over Distribution
ocatio over vocab
at a2 | | d1 a3 | | d2
|
\/ —3p- | h0 —> h1 ———P h2 | © @
Image: / \ /\
HxWx3 Weighted
eatures: D | ' | | V] Z | .
Weighted
umape Caplon Genaraon wilh Viewsd | combination
Attention”, ICML 2015 of features

Image Cabtionina with Attention

Visual Question Answering: RNNs with Attention
softmax n

LSTM

CNN

, Py 21 2 2+ 3 -
» » \
/ CNN which IS + the\ brown bread ?

What kind of animal is in the photo?
hm \ A cat.

i

.m.is;.\ n
[
BENFE

convolutional
feature maps C(/)

attention terms a,

* ’ - 7
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016 Why is the person ho’ainn a knife’
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes TO cut the cake with.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Multilayer RNNs

h; = tanh W' (

h e R"

ing

hy ™

W [nx 2n]

LSTM:

s1gm
S1gm
s1gm
tanh

z 1 -
¢t =fOc¢ 1+10g

h; = o ® tanh(c;)

—

Wt [4n x 2n]

—

Other RNN Variants

GRU [Learning phrase representations using rn

encoder-decoder for statistical machine translation,

Cho et al. 2014]
ri = o(Werxs + Whrehi—1 + b

2t = 0(Weoxe + Whohi—1 + b,
izt = tanh(Wynrzt + Whn(r:
ht = Zt & ht—l -+ (1 —) =) ilt

r)

)

O ht—l) T bh)

ILSTM: A Search Space Odyssey,

Greff et al., 2015]

|An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 20195]

MUTI:
: = sigm(W_,xr,+5,.)
r = sigm(Wex, + Wy he +6;)
hisy = tanh(Wy(r @ hy) 4+ tanh(x,) 4+ b)) © 2
- hl - (l — :)
MUT2:
: = sigm(Woxr, + Wi hy +0,)
I = .\iglll(.rf T “-hfl’f - bt)
hg-l = !;tull(“.hh(r .]u) T "',h.n - bh) ») &
< ,If - (l - :)
MUT3:
: = sigm(Wor, + Wi tanh(h;) + b,)
r = sigm(We,x,+ Wy h+5)
Il,,l = (illlll(".hh(f‘ . ht) " 2 “.,;,J’, T ['h)) &

-1 h"(l-:)

