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Given new input, what’s the output?
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Linear Regression

5. Predict unseen data
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Given new input, what’s the output?

Linear Interpolation

Given the data,

find a function h, also called a hypothesis,
that predicts an output, given an input




Given new input, what’s the output?

Polynomial Interpolation

Given the data,

find a function h, also called a hypothesis,
that predicts an output, given an input




Given new input, what’s the output?

Some other function?

Given the data,

find a function h, also called a hypothesis,
that predicts an output, given an input




How do you choose the hypothesis?

Some other function?

Given the data,

find a function h, also called a hypothesis,
that predicts an output, given an input




What happens if we have more inputs?

Assume a linear hypothesis

h

X —_—

Y

hQ(X) — [90, 91,02, 93, ] y [1,X1,X2,X3, ]

Inputs Output
A1 | X2 y
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A ) b
(2) (2) (2)
A ) b
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4) 4) 4)
A ) b




You have the following map for each apartment. What is x?
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Input Output

Feature Engineering A
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h is does not have to be linear in x o
y()
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Some other function?

Example: construct a polynomial model

ho(x) = Oy + O,x + O,x* + O0:x° + ...

hQ(X) — [90, 61,02, 93, ] ‘ [1,x,x2,x3, ]
0 P(x)

Feature map

ho(x) = 0" p(x)



Input Output

Feature Engineering A

D
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h is does not have to be linear in x
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Some other function?

Example: construct a polynomial model

ho(x) = Oy + O,x + O,x* + O0:x° + ...

hQ(X) — [90, 61,02, 93, ] ‘ [1,x,x2,x3, ]
0 P(x)

Feature map

hy(x) = 6" Pp(x) = Gypo(x) + 0, (x) + Orpr(x) + ...



Feature Engineering

A feature map can also drop features

Some other function?

Example: construct a polynomial model

hH(X) — 91)6 + 93)63

h@(x) = [919 93] - |, x3]

¢(X) Feature map

ho(x) = 0" p(x)



How to choose ¢(X)? How to optimize over ¢(x)

Underfitting Just right Overfitting
High Bias High Variance

p(x) = [1,x]



How can we tell if ¢( - ) Is good?

The purpose of Machine Learning is to Generalize to unseen data

Small Loss
y Hold out set y on test set y
A ® R ]
® ® ¢ ® .
’ Large Loss
® ° e ON test set
o
o
o
o
® o
- X x

Create a test set
to evaluate model

p(x) = [1,x]



How do we tell that ¢( - ) is good?

Define objective functions for each subset
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Variance Bias Trade-off

Error as a function of complexity

. oss

Jiesi(0) = J1r4in(0) ' J1e5i(0)
Generalization Gap - ’

Complexity
# parameters

o(x) =11, x] D(x) = (1, x, x%,x°,...]



Variance Bias Trade-off

Error as a function of complexity
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Double Descent

Model-wise
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Decomposition of Test Error

e [Jest error can be written as

J...(0) ~ Bias* + Variance

J test(e)

L oss

~/ Variance
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Complexity



Decomposition of Test Error

See derivation in Section 8.1.1

» Draw a training dataset S = {x(i),y(i)};f‘zl such that y(i) = h¥(xW) 4 £V
where £V ~ 4(0,07)

« [rain a model on the dataset, denoted by ]/;tS

. Take a test example (x, ¥) such that y = h*(x) + & where & ~ 4(0,6°) and
measure the expected test error (averaged over the random draw of the

training set § and the randomness of &)

MSE() = gz |(v = Ay




Decomposition of Test Error for square loss

See derivation in Section 8.1.1
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Other Hyperparameters

@ is not the only unknown parameter over which we want to optimize

* 1: Number of Epochs
o 11: Step size

 (: Feature vector



Optimize over ¢ and other hyperparameters

Visualize Training Set

Y
A

_ — S — Choose Feature Vector: ¢h(x)
Training Test = - x \
S et S e-t Unsatisfied Choose

Hyperparameters

Satisfied

Pick 0 with best J,,,, +—— Jtest(é)

Evaluate\

What'’s the problem with this workflow?

Optimize



How do we tell that ¢( - ) is good?

Define objective functions for each subset

dtr dval dtt
Y Test set Training Validation Test
4 . ® Set Set Set
® ®
®
.o Jran® = =— 3" (0T — y0)?
Validation set e 2d, &
® . )
oo LN (9T x@y _ )2
Test set: evaluate model at the end vl i=1
of hyperparameter optimization J
tt . )
Validation set: evaluation model during Jtest(é’) — A Z ('9T¢(X(l)) —) (l))

hyperparameter optimization Zdtt -



Machine Learning workflow - Cross Validation

Validation

Can we automate feature extraction?

y )
_ — S — Choose Feature Vector: ¢h(x)
Training Test = - x f \
not satisfied
Set Set Hyperparameter

J () —EEEm— J 0

Evaluate\

Visualize

What happens if you’re not satisfied
with J,, .(0)?

Optimize



Remedies to Overfitting

Practical tips to decrease overfitting

 Make the model simpler if it’s overfitting, and more complex if it’s underfitting

* Recursive Feature Elimination: start with all features and drop them one by one
while tracking the loss

* (Get rid of features that you think are irrelevant in predicting the desired output

 Add a regularization term that makes the hypothesis class smaller

Jrog®) = J(O) + AR(O)



Regularization

Force fitting parameters to be smaller - ‘shrink’ hypothesis class

ho(x) = 100.2 + 50.6x + 70.4x° + 1345x° + 200.3x*

Jrog®) = J(O) + A R(O)

Y Regularized
A s ‘

L1 Regularization L2 Regularization

R©) = |19, R(0) = |61l

ho(x) = 5.1x + 7.2x* + 3.3x" ho(x) = .1+ 5.2x + 7.4x* + .05x° + 2.3x*

Less coefficients Smaller coefficients



L2 Regularization

1
RO) =10l = (6; +6; + ...)°




L1 Regularization

RO) = 10ll; = 1651 + 10, | + ...




The ML workflow

>

Training Set Validation Set Test Set * e How do | choose the feature vector?

, — ¢(x)=1[1,2,...,7
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How do | choose the feature vector?

¢($) — [17 56]

fw(z) =W #x) = |1 2,07 27]
h qu(x) = [1, , sin(3z)]
7077979070777 7?7977




Linear Predictor

fo(x) = w'x

W = [WI’WZ’ W3, W4, ]

Network Representation
), Q== [xl, .XZ, X3, X4, . o ]

e

[ fW(X) — Wl.xl + WzXz + W3X3 + W4X4 |

g
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Linear Predictor

2 outputs?
P 3 * 2 fitting parameters
Y1 = W X = WX+ WXy + WisX3
—> A
Yo = Wy« X = Wy X| T+ WpoXy + W)3X3
X A
Matrix form
A xl
[M] B [Wn W12 W13] X
s 1w W W
Vs 21 22 % X5

yo= W X



From Matrix to Network

Matrix Representation Network Representation

Account for Bias: 1 =

~ X1
[M] B [Wn W12 W13] X
S 1 [Iwyy Wy W '
Y, 21 Wi W3 I
y = \%Y% X

Index notation

n
Yi = Z Wik
J=1



Linear Predictor - Explicit Bias

Matrix Representation

Network Representation
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Linear Predictor

W X b

y

I +

m X 1 m X n m X 1
Number n X 1
of outputs Number
of inputs Some formulations explicitly account for b,

while others include the bias as part of X
for simplicity of representation



Create synthetic data

https://colab.research.google.com/drive/1tmEpFvxScWTO0-2zzbkJtYxBrcDp2x5aH?usp=sharing

# synthetic parameters
num_points = 1000
var =

a =1.5

b =

np. linspace(®, 5, num_points)
1.5 * x*kx2 + b + var *x np.random.normal(@, 1, num_points)

y, outputs
N
o

X, inputs



Feature engineering (design matrix)

v def design_matrix(x, degree):
X = np.zeros((len(x), degree+1))
for 1 in range(X.shapell]):
X[:, 1] = x*kki
return X

degree = 2
X = design_matrix(x, degree)
y = y.reshape(-1, 1)




Shuffle and split

n_train = int(0.8 * num_points)
n_test = num_points - n_train

shuff_index = np.random.permutation(num_points)
X shuffle = X[shuff index]

y_shuffle = y[shuff_index]

X _train = X _shufflel[:n_train]
X _test = X_shuffle[n_train:]
y _train = y_shufflel:n_train]
y_test = y_shuffle[n_train:]




Visualize (training set)

= plt.figurel()
.plot(X_trainl:, 1], y_train, 'ro', ms=2, label='Training data')
.plot(X_test[:, 1], y_test, 'go', ms=2, label='Test data')

.xlabel('x, inputs"')
.ylabel('y, outputs')
. legend()

. Show()
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Define cost function and Gradient Descent

Cost function

def cost_function(X, y, theta):
m = len(y)

return 1/(2xm) * np.sum((X @ theta - y)*x%2)

Gradient Descent Function

def gradient_descent(X, y, theta, learning_rate, num_iters):
m = len(y)
J _history = np.zeros(num_iters)
for i in range(num_iters):
theta = theta - (learning_rate/m) * X.T @ (X @ theta - y)
J history[i] = cost_function(X, y, theta)
return theta, J_history

Gradient Descent Update

theta = np.random.randn(degree+1, 1)
learning_rate = 0.01

theta
v 0.0s

num_iters = 10000
theta, J_history = gradient_descent(X_train, y_train, theta, learning_rate, num_iters)

array([[ 2.04211351],
[-0.02468485],
[ 1.50372819]])




Plot result

# plot comparison
= plt.figure()
.plot(X_train[:, 1], y _train, 'ro', ms=2, label='Training data')
.plot(X_test[:, 1],
.plot(X _train[:, 1]

y_test, 'go', ms=2, label='Test data')

, X_train @ theta, 'bo', ms=2, label='Model')
.xlabel('x, inputs')
.ylabel('y, outputs')
. legend ()

. show()
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Plot result

Train and Test loss Comparison

# plot comparison
= plt.figure()
.plot(X_train[:, 1], y_train, 'ro', ms=2, label='Training data')
.plot(X_test[:, 1],
.plot(X _train[:, 1]

test_loss = cost_function(X_test, y_test, theta)
train_loss = cost_function(X_train, y_train, theta)

y_test, 'go', ms=2, label='Test data')
X _train @ theta, 'bo', ms=2, label='Model')

print(f'Test loss: {test_loss}')
print(f'Train loss: {train_loss}')

.xlabel('x, inputs')
.ylabel('y, outputs')
. legend ()

.show()

v/ 0.0s

Test loss: 0.5089706927156051
Train loss: 0.4511700483353495
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